Empresa 100% mexicana, fundada en 1961
50 años prefabricando México.

PREFABRICATED AND PRE-STRESSED CONCRETE FOR ANY KIND OF STRUCTURES
A 100% Mexican company, established in 1961.

PRESENTATION

We develop the precast concrete technology to solve structural problems by the use of high quality precast/prestressed concrete elements, which can reduce time and costs through the standardization of the different structural components.

Our mission is to offer structural construction solutions, service, and our expertise to the construction market, by the use of precast/prestressed concrete elements.

At SEPSA we are committed to be at vanguard in the manufacturing processes of precast/prestressed concrete elements to satisfy our customer needs.

SERVICES

We manufacture reinforced and prestressed precast concrete elements, being our main priority to provide a total customer service. We can offer architectural and structural projects, project analysis and design, production on plant and on site, transportation and erection of the concrete elements, site construction assembly and connections, project managing and supervision.

In addition, we guarantee the quality of the precast elements produced in SEPSA, by supervising the manufacturing processes, and verifying that all the materials used comply with the technical specifications of each project.

We produce a wide variety of precast products such as: AASHTO beams, NU beams, box girders, hollow core slabs, double tee slabs, retaining walls, reinforced earth walls, central barriers, columns, beams, bleachers, pedestrian bridges, tunnel segments, and all sort of precast elements used in the construction of buildings, warehouses, bridges, stadiums, etc. to satisfy the national construction requirements.

www.sepsacv.com.mx
Prefabrication plants and assembly equipment
Precast structures are a good alternative for the construction of office and apartment buildings, shopping malls, parking facilities, hospitals, schools, universities, warehouses, stadiums, among others. The use of prestressed concrete allows the optimization of the concrete elements, resulting in economic and very efficient structures.

The reduction in beam depths and the capability of greater spans are, among others, the main advantages of precast/prestressed structures. This represents an important reduction in the total building weight, therefore, less load on the foundation. Consequently, structural and economic benefits that result in cost reduction.

In building construction, the structure can be either “totally precast” or “partially precast”. According to the project, a building can have cast in place columns and precast floor system, which makes it a combine structure or “partially precast”. Structures with precast columns, beams, and floor system are called “totally precast” structures.

The floor system depends on the loads, the span, and the structure characteristics. The project design will determine the best precast solution. Among the most common sections used in floor systems are: hollow core Ultra-Span slabs, double Tees, or single Tees.

This structural system is successfully applied and tested throughout Mexico, also in high seismic zones such as México City.

“Faculty of Psychology UAEM”- Cuernavaca, Morelos

“Hilton Hotel”- Tuxtla Gutiérrez Chiapas

“UAQ Library”- Juriquilla, Querétaro

www.sepsacv.com.mx
“Bear Hunter Plaza” - Houston, Texas

“Office building Av. México” - México City
SEPSA, as a result of the research and development of new connection systems, has developed a solution for the beam to column connection that improves the building structural behavior. The SEPSA connection allows by means of a wet connection, the installation of negative and positive reinforcement in a very simple way, without the use of corbels or welding. This result on a monolithic connection to be consider in the structure analysis.

Buildings for educational use are ideal for precast construction, due to the modular configuration they usually have. Standardization of elements can be the major advantage in production and construction time reduction. Different structure elements can be fabricated simultaneously resulting in a faster construction.
PARKING FACILITIES

SEPSA has a great experience in the construction of parking facilities. We can perform the structural analysis and design according to the actual codes and regulations and carry out the total construction from beginning to the end.

Using the SEPSA connection, full height columns can be erected, speeding up the beam and floor system assembly. Usually hollow core slabs, double Tees or single Tees are used as floor systems. Spans can be as long as 26 meters.

SHOPPING MALLS

The use of precast structures in shopping malls is where the major economic benefits are obtained. SEPSA has made satisfied customers using precast/prestressed concrete elements in the construction of shopping malls.

Due to reduction of construction time using a precast structure, owners can start business sooner than with other type of construction. This results in a faster investment return.
Precast bridge construction has demonstrated to be technically and constructively efficient and competitive for middle span (20 to 60 meters) highway and urban bridges. Construction time reduction, concrete beams efficiency, and depth reduction, are some of the advantages that justify the competitiveness of the precast solution versus other solutions.

SEPSA has a variety of precast elements for bridge construction, not only for the superstructure beams, but for substructure headers and columns. AASHTO beams, NU beams, box girders, are the most common beams used for superstructures. The “winged box girder” is SEPSA’s innovation and has been widely used throughout the country in various mid span bridges.

SEPSA’s full height retaining walls for reinforced earth are used for bridge approaches. Columns and header beams of different shapes and sizes, has been design and prefabricated to solve bridge substructures.

SEPSA has the alternative to install mobile plants where, due to the site conditions, the access is complicated or the beam dimensions exceed traffic regulations. Using special formwork and self-stressing beds, we can fabricate on site pre-tensioned or posttensioned beams.
URBAN BRIDGES

Urban bridges are constructed within the city and form part of the zone landscape. In addition to the functionality, aesthetics becomes an important aspect in this type of structures.

SEPSA has developed the architectural design, molds, and fabrication processes, to fabricate and construct high quality precast elements in order to make urban bridges, to be a symbolic part of the zone landscape.

“Bernardo Quintana” Bridge in Av. Universidad, Qro
Road Distributor “Puerto Marqués”- Acapulco, Gro
Road Distributor “Bicentenario” - Querétaro
Road Distributor “Constitución de 1917”- Querétaro

www.sepsacv.com.mx
Nowadays, most highway bridges are constructed using precast concrete girders to span crossways or gorges. The sections commonly used for this kind of bridges are AASHTO beams, NU beams, and box girders.

SEPSA has a wide experience in the prefabrication and construction of highway bridges all over the country.

SEPSA’s asset is the complete customer service. Our commitment is to follow up the project from the engineering stage to the completion of the job.
A wide range of structures can be solved with the use of precast/prestressed concrete elements. Concrete is the construction material for excellence. It is a durable and versatile material that can be shaped in almost any form, colors and strengths. The concrete technology has developed to offer high performance materials that can be used in the precast/prestressed industry.

Using the most advanced technology in materials, formwork, fabrication processes, transportation, and erection equipment; SEPSA has constructed a countless number of structures. From a simple pedestrian bridge to high social impact structures, with great quality and aesthetics using innovated and creative concrete elements.

Among other precast concrete applications, SEPSA has participated in the construction of water tanks, tunnels, river bed guidance, reinforced earth retaining walls, viaducts; using standard precast sections or using specially design formwork for other sections, according to the project requirements.
The design of stadiums has evolved around the world as a result of the transformation and multiuse of this kind of infrastructure. Not only are used for sports, but also for concerts, massive congregations, and other kind of attractions. SEPSA has developed the engineering and design to offer an efficient, functional, and economic solution that will comply with the technical recommendations and requirements of stadium construction.

Precast construction has a wide range of applications. Architects and engineers have the imagination as a limit to create the future precast structures, and we have the commitment to prefabricate them.
Post-tensioning of structures has become a common prestressing method specially in building construction.

SEPSA has the equipment and personnel to perform posttensioning of structures with safety, efficiency, and technology to satisfy any project requirements. Several level office and apartment buildings, parking facilities, stadiums, bridges, foundation slabs, water tanks, are some of the structures where the post-tension system can be used.

Jobs where pre-tensioned elements are difficult to use due to beam dimensions, shape, job conditions, or geographic difficulties to transport precast beams, cast in site posttensioned beams is a great solution.

SEPSA has the most advanced post-tensioning equipment capable to stress from single coated strands up to multi-strand tendons 0.5” and 0.6” strand diameter, which all the strands can be stressed in one single operation. This guarantee that all the strands in the duct are stressed even, making more efficient and fast the stressing process.

Using post-tensioned bridge beams cast in place, has the beneficial cost compensation with the reduction on transportation costs. The sections commonly used in post-tensioning bridge construction are: AASHTO type beams, NU beams, and segmental box girders, as well as substructure header beams.

Mobile Plant installed on site

Post-tensioned AASHTO type beams

“Multi-strand Stressing Jack”

Post-tensioned Box Girders

www.sepsacv.com.mx
BEAM LAUNCHING

SEPSA has the most advanced and specialized launching equipment capable to launch, over any cliff or river bank, bridge beams up to 60 meters long and 130 metric tons. This equipment is ideal where conventional cranes cannot be used due to the orographic conditions, gore depth, or difficult crane access.

The auto-launching system allows the equipment to move to the next span, without the use of external support cranes. SEPSA’s launcher DJ60130 is capable to launch beams with longitudinal slopes up to 7% on maximum cross fall, minimum curve radius of 300 meters, and up to 45 degrees of skew.
CUSTOMER SUPPORT

PLANTS

MORELOS PRODUCTION PLANT
Xochitepec, Morelos.
01 (777) 365-67-40

ESTADO DE MÉXICO PRODUCTION PLANT
Polotitlán, Estado de México
01 (427) 266-01-88

VERACRUZ PRODUCTION PLANT
Medellín, Veracruz.
01 (229) 197-12-12

OFFICES

MÉXICO CITY
Calle Cracovia No. 72, Torre B, Piso 2, Oficina
B215, Colonia San Ángel, Delegación Álvaro
Obregón, México City C.P. 01000
01 (55) 5272-50-60

CUERNAVACA, MORELOS
Av. Adolfo Ruiz Cortines #320, Col. Acapantzingo
C.P. 62440 Cuernavaca, Morelos.
01 (777) 322-25-20

QUERÉTARO, QUERÉTARO
Blvd. Bernardo Quintana No. 7001
Torre 1, piso 9 interior 901,
Colonia Centro Sur. C.P. 76090
Querétaro, Querétaro
01 (442) 215-70-52

VERACRUZ, VERACRUZ
Carretera Federal Paso Del Toro Santa Fe No.
13451, Col. San Francisco Medellín Del Bravo,
C.P. 94270, Boca del Río, Veracruz.
01 (229) 197-12-12

GUADALAJARA, JALISCO
Av. Vallarta 6503 Segundo Piso
Int. M4-4 Col. Cd. Granja,
Zapopan, Jalisco C.P. 45010
01 (333) 612-14-58

SOCIAL MEDIA

Canal Sepsa Prefabricados
@SEPSA
@sepsacv
sepsacv

INFORMATION AND SALES

www.sepsacv.com.mx
sepsa@sepsacv.com.mx
01 (55) 5272 5060
777 327 46 16

57 Years
Prefabricating
México

Years
Prefabricating
México